Как используется эффект Холла: принципы явления и способы применения

Как используется эффект ХоллаИзучение влияния друг на друга электричества и магнетизма привело к открытию явления, названого впоследствии именем его исследователя, эффектом Холла. Благодаря экспериментам учёного был создан датчик, получивший широкое применение в электрических схемах. Его используют в мобильной и бытовой технике совместно с двигателями, в измерительном оборудовании за счет способности преобразовывать магнитную индукцию в разность потенциалов.

Открытие эффекта Холла

Открытие эффекта ХоллаБудущий физик Эдвин Герберт Холл родился в американском городе Горем в 1855 году. Получив начальное образование, он в 1875 году поступил в университет, где и ставил свои первые эксперименты. Так, изучая труды Максвелла об электричестве и магнетизме, Холл заинтересовался двумя фактами.

Первый заключался в том, что силы, возникающие в проводнике, расположенном поперечно линиям магнитной индукции, прикладываются непосредственно к веществу. Второй же сообщал, что значение этих сил зависит от скорости движения зарядов. В 1879 году вышла статья учёного Эдмунда Холла, доказывающая факт, что магнитное поле действует с одинаковым усилием как на подвешенный, так и зафиксированный объект.

Анализируя, какая сила может управлять движением заряженных частиц, он пришёл к выводу, что это может быть только напряжение. Для первого опыта физик использовал согнутую в спираль проволоку зажатую между диэлектриков. Эту конструкцию он поместил между двумя магнитами и запитал её от химического элемента тока. В качестве регистратора использовался мост Витстона с гальванометром Кельвина. В совокупности было проведено около тринадцати экспериментов и более четырёхсот измерений с разными условиями. Результатами экспериментов стало утверждение, что магнитный поток может изменять сопротивление материала.

По совету профессора Роуланда было выработано направление нового эксперимента, заключающее в следующем:

  1. К проводящей пластине подводился электрический ток.
  2. Гальванометр подключался к краям проводника.
  3. Включался электромагнит так, чтобы линии напряжённости поля лежали перпендикулярно плоскости пластины.

Предполагалось обнаружить условия для изменения протекания тока. Но опыт не получался, пока в качестве пластины не попробовали использовать тонкий лист из золота. Поставленный новый опыт оказался удачным. Гальванометр чётко зафиксировал появившееся напряжение.

В результате был обнаружено, что при подаче на проводник электрического тока заряд в ней распределяется равномерно по всей её поверхности.

Но как только на пластину воздействует магнитное поле, линии индукции которой перпендикулярны направлению тока, заряд перераспределяется к краям, и возникает разность потенциалов. В этом и заключается эффект Холла, на базе которого были после построены одноимённые датчики.

Физико-математическое определение

Эффект Холла — это явление, которое можно наблюдать при помещении вещества проводящего электрический ток под действие магнитного поля. Физик Холл открыл, что в проводнике, при пропускании по нему постоянного тока появляется электродвижущая сила (ЭДС) если его поместить в поперечное магнитное поле. Физически это обозначает возникновение напряжения на боковых гранях проводящего вещества при поднесении к нему магнита. Используя это, можно регистрировать магнитное излучение. Возникшее напряжение зависит от трёх факторов:

  • силы тока;
  • напряжённости поля;
  • типа проводника.
Вам это будет интересно  Формула расчёта ёмкости конденсатора в зависимости от площади пластин

Определение эффекта Холла

Сила, с которой электромагнитное поле действует на точечный заряд в веществе, называется силой Лоренца. Частным её случаем является сила Ампера. Математически напряжённость электрического поля описывается выражением:

E h = R*H*j*sinα, где:

  • H — напряжённость магнитного поля;
  • j — плотность тока;
  • α — векторный угол между силовыми линиями H и j;
  • R — постоянная Холла.

Если к пластине прямоугольной формы, имеющую длину L, которая намного будет превышать ширину b и толщину d, подвести ток, то его значение будет определяться формулой: I = j*b*d. Когда же её переместить в магнитное поле, направленное перпендикулярно этому току, то на боковых гранях пластины возникнет ЭДС, равная:

V h = E h* b = R*H*I/d.

Закон ЛоренцаТак как эффект объясняется влиянием поля на элементарные частички (дырки или электроны) то сила действующая на них описывается законом Лоренца: F =e * [H*υ], где υ — усреднённая скорость носителей зарядов, зависящая от концентрации и величины носителей. Под влиянием этой силы носители начинают прижиматься к боковым поверхностям пластины перпендикулярно j и H. Там они накапливаются, и возникает явление Холла, уравновешивающее силу Лоренца.

При этом коэффициент Холла равен: R = 1/n*e. Например, для металлов он составляет около 10-3 см3/Кл, а у полупроводников от 10 до 105 см3/Кл.

Постоянную Холла также можно выразить через способность носителей заряда реагировать на внешнее воздействие (подвижность). Так, она равна: R = µ/σ, где: µ — дрейфовая скорость носителей, а σ — удельная электропроводность. Но это в большей мере справедливо для поликристаллов. В то же время для анизотропных проводников будет верней формула: R = r/e*n. Здесь r принимается равной единице и обозначает оценку силы магнитного поля.

Разновидности явления

По мере исследования эффекта был обнаружен ряд особенностей появления электрического поля, отличающий от классического понимания. Так, учёными были выявлены факторы, приводящие к появлению напряжения без пропускания через пластинку тока. Такие явления получили название:

  • аномальное;
  • квантовое;
  • спиновое.

Для аномального эффекта необходимым условием является нарушение T-симметрии, то есть уравнений, описывающих физические законы при обращении времени. Наиболее часто этот эффект наблюдается в материалах, имеющих остаточную намагниченность (ферромагнетики).

Разновидности эффекта Холла

Квантовое же отклонение возникает в квазидвумерном электронном газе, где пренебрегают кулоновским взаимодействием. В нём носители заряда обладают слабой связью с ионами кристаллической решётки. В такой системе работают законы квантовых теорий.

При этом чем сильнее магнитное поле, тем более выражено дробное явление Холла, связанное с трансформированием структуры всего электронного газа.

В 1971 году учёные Дьяконов и Перель, изучающие механизм спиновой релаксации, обнаружили, что перпендикулярно направлению линий электромагнитного поля наблюдается отклонение носителей зарядов, имеющих противоположные спины. Этот эффект был связан со спин-гальваническим рассеянием и взаимодействием между спиновыми и орбитальными магнитными моментам.

Вам это будет интересно  Удельное электрическое сопротивление металлических проводников

Способы использования явления

На основе эффекта Холла создаются устройства и приборы, обладающие нужными и часто уникальными свойствами. Эти приборы занимают важное место в измерительно-контрольной технике, автоматизации, радиотехнике и т. д. Приспособления, использующие в своей работе явление Холла, называются элементами Холла (датчиками).

Эти датчики дают возможность измерять силу магнитного поля, так как при неизменной величине тока электродвижущая сила прямо пропорциональна линиям магнитной индукции. Прямая зависимость этих величин для элементов Холла является неоспоримым преимуществом перед другими типами измерителей индукции, основанных на контроле магнетосопротивления.

Способы использования эффекта Холла Приборы Холла позволяют проводить измерения электрических и магнитных характеристик не только металлов, но и полупроводников. Из-за простоты своего действия, несложности в изготовлении, а также высокой точности и надёжности они широко применяются в различных отраслях науки и техники. Датчики используются для измерения силы, давления, углов, перемещения и других неэлектрических величин. Этот эффект используют и при изготовлении полупроводников для контроля подвижности носителей зарядов и подсчёта их концентрации.

Для этого используется формула эффекта Холла: V h = j*B*H / n*q = B*I / (q*n*α) = R*B*I/α,

из которой число носителей находится как N = (I*B) / (q*α* V h). Таким образом, можно определить не только количество носителей, но и также их тип (знак).

Элементы Холла применяются в автомобилестроении из-за их невысокой стоимости, точности показаний, надёжности и способности не зависеть от условий окружающей среды. Их используют в конструкции бесконтактных однополярных и биполярных прерывателей. Благодаря их миниатюрному исполнению электронные гаджеты можно автоматически включать или выключать экран при открытии или закрытии чехла с магнитом. Они помогают в GPS-навигации, улучшая геопозирование.

GPS-навигации и эффект Холла

С каждым годом эффект Холла находит всё более новое применение. Свидетельством тому служит появление устройства виртуальной реальности — Google Card Board, в основе работы которого лежит взаимодействие магнита с датчиком Холла.

Магнитные датчики

Магнитные датчики Холла Основное преимущество использования датчиков магнитного поля, заключается в их бесконтактной работе. Они бывают аналоговыми и дискретными. Первый тип считается классическим. В его основе лежит принцип, что чем сильнее будет магнитное поле, тем больше будет величина напряжения. В современных приборах и устройствах такой тип уже практически не используется из-за значительных размеров. Цифровой же датчик построен на режиме работы «ключ» и имеет два устойчивых положения. Если сила индукции недостаточна он не срабатывает.

Вам это будет интересно  Расчет сопротивления параллельного соединения резисторов

Разделяются дискретные элементы Холла на два типа:

  • униполярные — срабатывание которых зависит от полюса магнитного поля;
  • биполярные — переключения состояния датчика происходит при изменении магнитного полюса;
  • омниполярные — реагируют на действие магнитной индукции любого направления.

Конструктивно датчик представляет собой электронный прибор с тремя выводами. Он может выпускаться как в стандартном исполнении DIP, DFN или SOT, так и в герметичном: например, 1GT101DC (герметичный), A1391SEHLT-T (DNF6), SS39ET (SOT), 2SS52M (DIP).

Характеристики устройства

Выпускаемые датчики, использующие явление Холла, как и любые электронные радиокомпоненты характеризуются своими параметрами. Главным из них является тип прибора и напряжение питания. Но, кроме этого, выделяют следующие технические характеристики:

  1. Величина измеряемой индукции. Измеряется она в гауссах или миллитеслах.
  2. Чувствительность — определяется значением магнитного потока, на который реагирует датчик, единица измерения мВ/Гс или мВ/мТл.
  3. Нулевое напряжение магнитного поля — значение разности потенциалов, соответствующее отсутствию магнитного поля.
  4. Характеристики датчиков Холла Дрейф нуля — изменение напряжения, зависящее от температуры. Указывается в процентном отклонении от температуры 25 °C.
  5. Дрейф чувствительности — изменение чувствительности, вызванное изменением температуры.
  6. Полоса пропускания — уровень снижения чувствительности с шагом в 3 дБ.
  7. Индукция включения и выключения — это значение напряжённости поля, при котором датчик устойчиво срабатывает.
  8. Гистерезис — разность между индукциями включения и выключения;
  9. Время срабатывания — характеризуется промежутком времени перехода из одного устойчивого состояния в другое.

Изготовление приборов

Материал, из которого выполняется элемент Холла, должен обладать большой подвижностью носителей зарядов. Для получения наибольшего значения напряжения вещество не должно иметь высокую электропроводностью. Поэтому при производстве устройств используется: селенид, теллурид ртути, антимонид индия. Тонкопленочные датчики получаются методом испарения вещества и осаждения его на подложку. В качестве её служит слюда или керамика.

Изготавливают датчики также из полупроводников — германия и кремния. Их легируют мышьяком или фосфорной сурьмой. Такие устройства обладают низкой зависимостью от изменения температуры, а величина образуемой на них ЭДС может достигать одного вольта.

Типовой процесс производства пластинчатого датчика Холла состоит из следующих операций:

  • обрезка пластины нужного размера;
  • шлифовка поверхности;
  • формирование с помощью пайки либо сварки симметричных выводов;
  • герметизация.

Таким образом, применение эффекта Холла нашло широкое применение в магнитометрии, смартфонах, автомобилях, выключателях и охранных системах.

Приборы на основе датчиков Холла

Одним из главных преимуществ датчиков, выполненных на этом эффекте, является электрическая изоляция (гальваническая развязка) делающие их применение удобным и безопасным.

Помогла статья? Оцените

Звёзд: 1Звёзд: 2Звёзд: 3Звёзд: 4Звёзд: 5
Загрузка...

Обсуждают

  1. Віра

    Доброго дня, а можете вказати літературу

  2. Віра

    Добрый день, очень полезная статья, спасибо, но не могли бы вы еще указать список использующей литературы.

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам:

Adblock
detector