Понятие и нахождение электрической мощности по формулам

Электрическая мощность Электрическая мощность — это одна из главных физических величин, характеризующаяся преобразованием и передачей энергии. Её понятие непосредственно связывается с током и напряжением в сети. Этот параметр важен и учитывается не только при разработке электротехнического оборудования, но и при построении электрических цепей. Для определения её величины используется формула мощности, по которой выполнить расчёт совершенно несложно.

Суть понятия

При протекании через проводник электрического тока вокруг него возникает электромагнитное поле. Образуется оно из-за движущихся элементарных частиц, обладающих зарядом. Магнитное поле считается основным признаком присутствия электрического. При изменении одного происходит изменение и другого. Если ток в проводнике пропадёт, то электромагнитное поле всё равно никуда не исчезнет, разве что потеряет свою интенсивность.

Английский физик Джеймс Клерк Максвелл.Основоположником теории поля стал английский физик Джеймс Клерк Максвелл. Именно он доказал связь между этими двумя явлениями, описав их в своей работе, изданной в 1857 году. Учёный обосновал, что электрическое поле не может отдельно существовать от магнитного. Величина этих полей связана с энергией, заключённой в них. Она постоянно передаётся из одной формы в другую, но при этом не исчезает.

Электромагнитное поле распространяется в виде излучения, или как выражаются учёные — пространственного возмущения. Это испускание свободно распространяется в любой физической среде. Характеризуется оно частотой, длиной и поляризацией (направлением) волны. А также одним из параметров излучения является количество энергии, переносимой волной (интенсивность).

Численно интенсивность определяется как усреднённый период колебания волны, пронизывающей площадку, расположенную перпендикулярно ей. При этом она связана с плотностью энергии и скоростью распространения волны. Поток электромагнитной энергии находится с учётом вектора Пойтинга, который принимает во внимание плотность, интенсивность и напряжённость поля.

То есть математически, интенсивность описывается выражением: I (t) = 1/T ∫ {s (t)} dt, где S (t) — вектор Пойтинга. В простом понимании её смысл заключается в том, что количественная составляющая электроэнергии изменяется во времени, при этом скорость изменения зависит от напряжённости электрического поля и магнитной индукции.

Для обозначения именно электрической составляющей электромагнитного поля было введено понятие электрическая мощность. Под ней понимают физическую величину, характеризующую передачу или преобразование электрической энергии.

Физическое определение

Основной характеристикой любого электрического прибора является мощность. Передача электричества от источника питания к нагрузке сопровождается преобразованием энергии из одного вида в другую. Выработанное электричество передаётся по электрической цепи (например, линии передачи) при этом происходит её частичное рассеивание. Другими словами, часть электричества превращается в иную энергию: тепловую, световую, механическую.

Это преобразование характеризуется интенсивностью, обозначающей, какое её количество перейдёт в другой вид за единицу времени. Интенсивность, с которой происходит трансформирование, и называют мощностью.

Мощность электрического тока

Согласно Международной системе единиц (СИ) измеряется мощность тока в ваттах. Сокращённое его обозначение в русском языке имеет вид — Вт, а в международном — W. В технической литературе саму величину обозначают с помощью латинской буквы P.

Математическое определение, соответствующее сказанному, выглядит как P = dW / dt, то есть характеризует изменение энергии во времени. Будь то генерируемая источниками мощность или передающаяся по линиям электропередач, она имеет одинаковый физический смысл. Её значение рассчитывается в зависимости от формы сигнала, то есть постоянных и переменных составляющих.

Так как её изменение происходит во времени, то для удобства понимания процесса были введены понятия мгновенных значений. С их помощью можно провести вычисление энергии для любой точки во времени.

Мгновенные величины

Под мгновенной мощностью понимается величина энергии, соответствующая произведению значений разности потенциалов и силы тока на определённом участке цепи. Любое твёрдое физическое тело состоит из кристаллической решётки, в составе которой находятся носители заряда — электроны. Их мерой является кулон. Они могут быть как свободными, так и прикреплёнными к атомам. Свободные частички хаотично перемещаются в теле, компенсируя энергию своего движения различным направлением по отношению друг к другу.

Вам это будет интересно  Принцип работы и устройство электронного мегаомметра

Если же к телу, обладающему свободными электронами, приложить электромагнитное поле, то их движение станет упорядоченным. Такое их перемещение называется силой тока. Определяется ток отношением количества зарядов, прошедших через проводник, с единичным поперечным сечением за единицу времени: I = dQ/dT. Величиной его измерения считается ампер.

Формула мгновенной мощности

Чтобы переместить заряд в проводнике, необходимо затратить работу, которая называется напряжением. То есть это физическая величина, соответствующая затраченной энергии для передвижения заряда из одной точки в другую. Отличие значений энергий в этих точках называется разностью потенциалов. Измеряется напряжение в вольтах. А его значение может быть вычислено по формуле: U = A/q.

При перемещении в теле проводника электроны сталкиваются с различными примесями и дефектами кристаллической решётки. В результате их часть заряда передаётся этим структурам, то есть фактически происходит отбор мощности. Забранная энергия частично преобразуется в тепло и свет. Количество тех или иных флуктуаций (неоднородностей) на пути прохождения тока было названо сопротивлением, величиной обратной проводимости. В соответствии с СИ обозначается она буквой R, а измеряется в омах.

Мгновенная зависимость всех трёх величин между собой была установлена физиком-экспериментатором Симоном Омом. Согласно его закону, сила тока прямо пропорциональна разности потенциалов и обратно пропорциональна сопротивлению на участке цепи. То есть равна: I = U/R.

Формула для общего случая

Так как напряжение — это работа, то, умножив её на количество перенесённых зарядов, получится энергия, затраченная для перемещения частиц от одного края проводника к другому. Энергия, в общем понимании, это работа за единицу времени. Поэтому можно записать следующее выражение Pab = A/dt, где:

  • dt — интервал времени, за который все свободные заряды были перенесены;
  • A — непосредственно сама работа.

Формулу мощности тока для одного заряда можно записать P = U/dt, а исходя из неё для всех зарядов как Pab = q*U/dt, где q — количество зарядов прошедших из одной точки (a) в другую (b) за промежуток времени dt.

Напряжение токаИсходя из определения, данного силе тока, она практически является зарядом. В случае изменения во времени ток можно описать выражением I = q/dt. Тогда, исходя из этой формулы, верным будет утверждение, что q = I*dt. Если подставить полученную формулу вместо q в выражение, описывающее мощность, получится Pab = U* (I*dt/dt) = U*I.

Если время изменения бесконечно мало, то можно принять, что напряжение и ток практически не изменяются. В результате мгновенная электрическая мощность будет равна P (t) = u (t)*i (t). Как видно из формулы, значение мощности для любой точки времени будет прямо пропорционально мгновенным значениям тока и разности потенциалов. При этом если цепь неидеальная, то она содержит определённое сопротивление. Используя закон Ома для участка цепи, формулу для нахождения мгновенной мощности можно переписать в виде P (t) = i (t)2*R = u (t)2/R.

Мощность одновременно связана сразу с несколькими величинами и соответствует полной работе, затрачиваемой на перемещение некоторого количества кулонов за единицу времени (одну секунду). Из определения следует, что одно и то же значение мощности можно получить разными способами, например, уменьшая силу тока, но увеличивая напряжение. Такой подход и используется при передаче энергии на большие расстояния. Для этого применяются трансформаторы, понижающие и повышающие ток.

Виды электрической мощности

Активная электрическая мощностьСуществующую в природе электрическую мощность делят на два вида: активную и реактивную. Первая характеризуется таким превращением, которое происходит безвозвратно. То есть электрическая энергия трансформируется в тепло, свет, кинематику и другие виды. Такое преобразование считается полезным, так как оно идёт на обогрев, приготовление еды, освещение помещений, превращается в механическую силу, например, работа дрели, насоса и тому подобное.

Реактивная же мощность связывается с потерями энергии, то есть с той частью, которая не выполняет полезную работу. Возникает она из-за индуктивной или ёмкостной составляющих электрической цепи. Эти параметры характеризуются сопротивлением, зависящим от частоты сигнала. Поэтому для электроцепей с постоянным током понятие реактивной мощности не применяется.

В цепи же переменного тока наблюдается сдвиг сигналов напряжения и тока относительно друг друга. Обозначается он греческой буквой φ (фи). Причём если преобладает ёмкостная составляющая, то ток опережает напряжение, а когда индуктивная, то наоборот.

Индуктивное и емкостное сопротивлениеПрисутствие ёмкостного и индуктивного сопротивления считается паразитным, так как на нём происходит бесполезное нагревание (потеря энергии). Но, кроме сопротивления, эти паразитные величины обладают способностью накапливать мощность, конденсатор — электрическую, а индуктивность — магнитную. Как только эта энергия достигнет максимально возможного значения, они начинают отдавать её в цепь. Для учёта величины реактивной мощности вводится понятие sin φ.

Вам это будет интересно  Особенности присвоения 4 группы по электробезопасности

Поэтому полная формула мощности для электрического тока переменного сигнала складывается из двух составляющих и находится из выражения S = (P2+Q2)½, где:

  • P — активная составляющая, Вт. P = U * I cos φ;
  • Q — реактивная часть, ВА (вольт-амперы). Q = U * I * sin φ.

При этом sin φ и cos φ являются коэффициентами мощности переменного сигнала. Типичным примером источника активной мощности является нагреватель. Он делается из материала с высоким внутренним сопротивлением току, поэтому сигнал, проходя через него, преобразовывает свою электрическую энергию полностью в тепловую. В качестве же устройств, обладающих реактивной мощностью, можно привести приборы содержащие трансформаторы, например, перфоратор, холодильник.

Реактивный коэффициент

По-другому он называется коэффициентом мощности и является безразмерной величиной, вводимой для вычисления реактивной составляющей. Говоря научным языком, он показывает, насколько сдвигается фаза переменного тока, протекающего через нагрузку, от возникшего на ней напряжения. Численно он принимается равным косинусу сдвига. Математически это сдвиг интерпретируется как косинус угла между векторными значениями тока и напряжения.

Простыми же словами, коэффициент мощности, обозначаемый φ, указывает на ту часть расходуемой электроэнергии, которая преобразуется в полезную работу. Например, при cos φ = 0,9 девяносто процентов от полной энергии уйдёт на совершение полезного действия, а остальные десять будут считаться потерями. Поэтому если в паспорте на какой-либо прибор указано, что мощность изделия составляет 500 Вт, а cos φ = 0,5, то полный расход его энергии будет составлять 500/0,5 = 250 ВА.

Реактивный коэффициент

То есть коэффициент φ находится из отношения потребляемой устройством энергии к значению полной мощности. Нередко в паспорте оборудования указывается и составляющая φ (характер нагрузки). Она может быть резистивно-ёмкостной или резистивно-индуктивной. При этом сам коэффициент соответственно является опережающим или отстающим.

Если же напряжение в цепи изменяется по синусоидальному закону, а ток по несинусоидальному, то нагрузка никакой реактивной составляющей иметь не будет, а коэффициент принимается равным главной волне (первой гармонике). Под несинусоидальными понимаются искажения электрического сигнала, связанные с гармониками, преобладающими над основной частотой.

В математике формулой для нахождения коэффициента мощности является выражение: cos φ= P/S. Поэтому чем больше его значение, тем меньше потребляет устройство энергию из сети. Существуют различные способы поднятия значения cos φ, даже до максимального значения, равного единице, называемые коррекцией. Наиболее эффективным является добавление в схему сложного электронного узла, размещаемого на входе устройства.

Цепь переменного тока

В цепи переменного сигнала напряжение и ток описываются с помощью следующих формул: U = Um*sin w*t и I = Im**sin w*, где: Um и Im — мгновенные значения величин (измеренные в определённое значение времени), а w — циклическая частота. Подставляя эти формулы в выражение для нахождения мощности, можно получить следующее: P = Um*Im *sin2w*t = U*I — U*I *cos2w*t, где U*I = Um*Im/2.

Цепь переменного токаИсходя из полученного выражения, видно, что активная мощность состоит из двух частей — постоянной U*I и переменной U*I *cos2w*t, при этом среднее её значение находится как P = I*U. В электрической цепи, содержащей реактивную составляющую (например, индуктивность), значение мгновенной мощности будет вычисляться по формуле: q = u*i. Соответственно: u = Um *sinw*t и i = Im*sin (w*t — p/2) = -Im*cosw*t.

Вам это будет интересно  Расчёт и таблицы подбора сечения кабеля по мощности и току

Подставив эти выражения в главную формулу можно получить следующее реактивное обозначение мощности Q = Um*Im*sinw*t*cosw*t = Um*Im*sin2w*t/2 = U*I *sin2w*t. Проанализировав это математическое определение, можно установить, что реактивная энергия состоит только из переменной части, которая изменяется с удвоенной частотой, при этом её среднее значение равно нулю.

Так как полная мощность равна сумме активной и реактивной энергий, то с учётом фазового сдвига для цепи переменного тока, содержащей активное сопротивление R и реактивное L, C, она будет равна: S = u*i = Um*Im*sin w*t*sin (w*t- φ). Раскрыв скобки и заменив мгновенные величины на действующие, получится: S =U*I*cos φ — U*I*cosφ*cos2w*t-U*i*sinφ*sin2w*t. Полная мощность состоит из сумм мгновенной активной мощности P = U*I*cosφ — U*I*cosφ*cos2w*t и мгновенной реактивной Q = -U*i*sinφ*sin2w*t. Отрицательное значение возникает из-за сдвига фаз, приводящего в определённый момент времени к противофазе. Итоговые же значения для цепи переменного тока будут равны P = U*I*cosφ и Q = U*I*sinφ.

В электротехнике существует такое понятие, как треугольник мощности. Представляет он собой прямоугольную геометрическую фигуру, катетами которой являются Q и P, а гипотенузой S. Угол между катетом и гипотенузой обозначается φ. Треугольник мощностиИсходя из того, мощность равна:

  • активная — P = Z*I2;
  • реактивная — Q = X*I2;
  • полная — S = R*I.

Применив теорему Пифагора, получится формула для нахождения полной мощности S = (P 2 + Q 2)½.

Измерение электрической энергии

Исходя из выражения P= U*I можно сделать вывод, что энергию можно измерить с помощью приборов, предназначенных для замера напряжения и тока. Понадобится, используя амперметр и вольтметр, получить данные, а после, подставив их в формулу, рассчитать значение мощности. Суть измерения заключается в том, что одновременно в цепь параллельно подключается вольтметр, а в разрыв цепи амперметр. Такой метод называется косвенным, а использование двух приборов снижает точность полученного результата.

Поэтому были разработаны специальные тестеры, предназначенные для прямого измерения энергии — ваттметры. Такого рода измерители могут использоваться в однофазных цепях как постоянного, так и переменного тока. Но при этом ваттметры разделяются на две категории:

  1. Измерение электрической энергииЦифровые — в основе их схемотехники используется микропроцессорный блок, анализирующий полученный сигнал и по сложным алгоритмам вычисляющий результат, который выводится на экран прибора в цифровом виде. Их погрешность измерения составляет не более 0,1.
  2. Аналоговые — использующие в работе электродинамические и ферродинамические измерительные головки. Выполняются они в виде катушек, отклоняющих стрелку. Шкала отклонения проградуирована в ваттах. В зависимости от влияния поля, стрелка отклоняется на измеренную величину. Первого типа устройства имеют класс точности около 0,1−0,5, а второго — 1,5−2.

Аналоговые приборы практически уже мало где используются, в основном для нахождения мощности устройств, подключённых к промышленной сети с частотой 50 Гц. На постоянном токе их результаты посредственные, так как на измерительные катушки влияет гистерезис сердечников (эффект насыщения).

Отдельную подгруппу тестеров составляют варметры. Это специальные измерители, предназначенные для вычисления реактивной мощности. А также для косвенного метода используется электроизмерительный прибор, получивший название фазометр. С помощью его можно найти угол сдвига фаз сигнала, то есть фактически определить коэффициент мощности.

Пример расчёта

Необходимо рассчитать параметр двигателя, подключённого к трёхфазной сети. Номинальное напряжение его работы (Uн) составляет 0,25 кВ. Паспортная мощность (Pн) равняется 5 кВт, а коэффициент мощности (cos φ) 0,6. КПД двигателя (ηн) 0,93.

Рассчитать параметр двигателя,Полная расчётная мощность определяется по формуле: S = Pн/cosφ* ηн. Если подставить в неё исходные значения, то получится: S = 5/0,6*0,93 = 8,9 кВ*А. Активная энергия P находится с помощью выражения P = Pн/ ηн и равна 5,37 кВт. При желании можно вычислить и ток. Для трёхфазной сети он будет: I = S / *Uн = 8,9/ *0,25 = 20,6 А.

Таким образом, мощность в цепи постоянного тока может быть только активной, зависящей от тока и напряжения. Но для цепи изменяемого тока она складывается из двух частей — активной и реактивной. Причём активная энергия характеризуется полезной работой, а реактивная — паразитной, снижающей КПД.

Помогла статья? Оцените

Звёзд: 1Звёзд: 2Звёзд: 3Звёзд: 4Звёзд: 5
Загрузка...

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам:

Adblock
detector