Принцип работы и применение управляемого тиристора

Применение управляемого тиристораМигающая наружная реклама украшает городские кварталы. Забавный световой эффект «бегущие огни» сопровождает выступления эстрадных артистов. Новогодняя гирлянда на ёлке создаёт праздничное настроение. Маленькая деталь, которая управляет огромными электронными приборами, называется тиристор.

Принцип работы

Радиотехнический термин thyristor составлен из двух частей. В начале употреблено слово thyra, что означает на греческом языке «дверь» или «вход». Затем использовано окончание английского слова resistor, которое переводится как «сопротивление».

Тиристором называется полупроводниковое устройство, где на базе монокристалла собираются более двух p — n переходов. Суть электронно-дырочного соединения пары химических элементов — так расшифровывается понятие «p — n переход» — состоит в том, что при подключении прямого тока на выводах появляется разность потенциалов. При обратном токе совершается блокировка носителей заряда.

В устройство коммутируется сигнальный контакт, назначение которого состоит в управлении током пробоя границы разнозаряженных зон. На электрических схемах обозначение тиристора почти совпадает со значком диода. Различие состоит в том, что к катодному выводу пририсована стрелка управляющего электрода.

Конструкция прибора

Полупроводниковый прибор представляет собой структуру, которую образуют четыре слоя разной полярности, соединённых последовательно. Образуется цепочка p — n — p — n типа. К наружному слою с положительным зарядом подключён анодный вывод, к отрицательному полупроводнику — катод. К внутренним прослойкам допустимо присоединение до двух управляющих контактов.

Принцип работы тиристораОсновообразующим элементом тиристора является кристалл кремния с заданной толщиной. Для формирования p-слоя применяются примеси бора и алюминия. Чтобы получить n-область используется фосфор. Нанесение добавок происходит с помощью диффузионной технологии. При температуре от 1000° C до 1300° C создаётся переходный слой глубиной 60 Мкм.

Внешний вид современных устройств непохож на детали, изготовленные два десятка лет назад. Раньше они выглядели как «летающие тарелки». Минусовый электрод и сигнальный контакт располагались на торце, а анодный вывод устанавливался с противоположной стороны или сбоку изделия. Сейчас тиристор представляет собой небольшой пластмассовый коробок с тремя электродами внизу. Расположение контактов указывается в описании устройства.

Вам это будет интересно  Виды однополюсных и двухполюсных указателей напряжения до 1000 В

Режимы работы

Принцип действия тиристора характеризуется работой в двух устойчивых состояниях. Положение «закрыто» свидетельствует о низкой проводимости. Значение «открыто» указывает высокую электропроводность.

Как работает тиристор, для чайников объяснит диаграмма зависимости силы тока от напряжения. В исходной позиции полупроводниковый элемент заперт.

Даже значительное увеличение разности потенциалов на контактах не приведёт устройство в рабочее состояние. Линия графика почти горизонтальна.

Но стоит подать ток на управляющий вывод, как тиристор откроется. В этот момент линейный отрезок на графике круто изменяет угол наклона, близкий к вертикальному положению. От величины сигнального тока зависит уровень пробойного напряжения. Вольт-амперная характеристика объясняет, зачем требуется применение управляющего электрода. После обнуления командного сигнала устройство останется открытым, пока напряжение не уменьшится до уровня удержания.

ТранзисторыРабота транзистора также основана на взаимодействии p — n переходов. От полупроводникового триода, который, как вентиль, плавно регулирует напряжение, тиристорный элемент отличается скачкообразным ростом разности потенциалов после появления сигнала управления. Своеобразный электронный ключ по команде открывает дорогу питанию электрической цепи.

Классификация тиристоров

Существует два варианта управления полупроводником: через катод или анод. Это зависит от полярности слоя, к которому подключено управление. Поэтому различают тиристоры с катодным или анодным управлением.

Классификация тиристоровВозможен вариант отсутствия управляющего электрода. Такой прибор называется диодным тиристором, и включение устройства производит напряжение, подаваемое на основные контакты. Отсюда классификация на динисторы, не имеющие вывода управления, и тринисторы, у которых есть управляющий контакт.

По способностям пропускать ток в том или ином направлении тиристоры подразделяются на симметричные и асимметричные устройства. Симметричные полупроводники, которые профессионалы называют симисторами, способны проводить ток в обоих направлениях. В сущности, симистор — это пара тиристоров, включённых по встречно-параллельной схеме.

Вам это будет интересно  Математическая запись закона Джоуля-Ленца и его применение

Асимметричные приборы пропускают ток только в одну сторону:

  • прямонаправленные устройства заперты при подключении напряжения обратного направления;
  • приборы, пропускающие обратный ток, открываются при подаче напряжения противоположной полярности.

В электронных схемах также используются запираемые тиристоры. Устройство открывается, когда на управляющий электрод подаётся ток. В положение «закрыто» прибор переходит при изменении полярности тока управления.

Технические характеристики

Области применения полупроводника разнообразны. В зависимости от того, для чего нужен тиристор, подбирается деталь с требуемыми техническими данными. Выбрать необходимый тип полупроводникового триода помогут рабочие параметры устройства:

  1. Максимальный ток от анода к катоду.
  2. Наибольшая величина обратного тока указывается только для типов, обладающих такой функцией.
  3. Технические характеристики тиристоровМаксимальное прямоточное напряжение в положении «открыто».
  4. Минимальные напряжение и сила тока раскрытия p — n перехода.
  5. Предельный уровень сигнального тока, приводящий к пробою тиристора.
  6. Ток удержания определяет уровень, ниже которого наступает состояние «закрыто».
  7. Мощность указывает величину допустимой нагрузки.
  8. Время срабатывания.

Контроль работоспособности

Перед установкой тиристора в схему необходимо убедиться в его исправности. Целостность детали проверяется мультиметром или лампочкой, подключённой к источнику питания.

На измерительном приборе устанавливают функцию прозвонки. Сначала щупы присоединяют к аноду и катоду попеременно в прямом и обратном направлении. Цифра «1» на дисплее укажет, что ток не проходит, и деталь исправна. Затем прозванивают линию от анода до сигнального контакта.

Одна из цепей должна быть оборвана, а другая покажет небольшое сопротивление. Если в обоих случаях мультиметр обнаружит одинаковый результат, то тиристор неисправен.

Работоспособность детали можно проверить, собрав простую электрическую цепь. Анодный контакт присоединяют к «плюсовому» зажиму батарейки. Катод замыкают на «минус» источника питания через лампочку. Куском провода кратковременно смыкаются анодный и управляющий выводы. Лампа должна загореться и не гаснуть после разрыва цепочки «анод — управляющий электрод».

Вам это будет интересно  Причины и последствия возникновения короткого замыкания

Контроль работоспособности тиристора

Работающий осветительный прибор указывает на исправность тиристора. При проверке необходимо учитывать величину подаваемого напряжения, которая должна быть достаточной для включения лампы.

Практическое применение

Благодаря принципу работы тиристор используют в преобразователях напряжения и выпрямителях тока. Вместе с силовым трансформатором полупроводник способен изменять уровень тока. На этой основе собраны зарядные устройства автомобильных аккумуляторов, а также мощные электросварочные аппараты. Способность прибора изменять переменное напряжение на постоянное напряжение используется в преобразователях.

В устройствах сигнализации тиристор включается командой от внешнего датчика, изменяющего напряжение на управляющем электроде. Конструкции, которые контролируют окружающую обстановку, могут реагировать на изменение температурного режима или объёмного наполнения пространства. За освещённостью объекта наблюдает оптотиристор.

Практическое применение тиристоров

Полупроводниковый тиристор предназначен для управления большими токами слаботочным сигналом. С помощью диммерных блоков, на которые подаётся команда от светового пульта, управляются театральные прожекторы и светильники.

Поддержание заданного температурного режима в печи обеспечивается регулятором мощности дуги горения. В электрических двигателях скорость вращения ведущего вала контролирует тиристорный регулятор частоты хода.

Архимед обещал перевернуть Землю, если бы у него была точка опоры. Управляемый тиристорный полупроводник является тем рычагом, который расширяет области применения электронных устройств. Небольшая радиодеталь умножает возможности человека в развитии научно-технического прогресса.

Помогла статья? Оцените

Звёзд: 1Звёзд: 2Звёзд: 3Звёзд: 4Звёзд: 5
Загрузка...

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам:

Adblock
detector