Виды, устройство и принцип работы ползункового реостата

Принцип работы ползункового реостатаЗначениями силы тока и напряжения можно управлять при помощи специального простого устройства, которое было разработано Иоганном Христианом Поггендорфом. Оно называется реостатом, или переменным резистором. Для того чтобы разобраться в принципе действия устройства, необходимо рассмотреть зависимость тока и напряжения от величины сопротивления.

Общие сведения

Электрический токЭлектрическим током называется движение свободных заряженных частиц под воздействием электромагнитного поля. Любое вещество состоит из атомов, которые образуют кристаллическую решетку при помощи ковалентных связей. При протекании электрического тока по проводнику происходит взаимодействие его частиц с узлами кристаллической решетки. Носители заряда обладают кинетической энергией (Ek), которая зависит от массы частицы (m) и ее скорости (V3). Она определяется по формуле: Ek = m * sqr (V3) / 2.

При столкновении частиц с узлами кристаллической решетки происходит полная или частичная передача энергии атому.

Однако энергетический потенциал свободного носителя заряда восстанавливается, поскольку на него постоянно воздействует электромагнитное поле. Процесс взаимодействия частиц с атомами повторяется определенное количество раз, пока не прекратится воздействие электромагнитного поля или частица не пройдет полностью через проводник. Это физическое явление называется электрическим сопротивлением или проводимостью. Последняя величина является обратной сопротивлению. Сопротивление обозначается литерой «R», а проводимость — «G».

Единицей измерения сопротивления является Ом. Рассчитывается при помощи определенных формул или измеряется электронно-измерительным прибором, который называется омметром.

Физическая зависимость

Величина R зависит от количества свободных носителей заряда, число которых определяется исходя из электронной формулы вещества. Ее можно определить из периодической таблицы химических элементов Д. И. Менделеева. Вещества классифицируются по проводимости следующим образом: проводники, полупроводники и изоляторы (непроводники).

Таблица Д. И. Менделеева

К проводникам относятся все металлы, электролиты и ионизированные газы.

В металлах носителями заряда являются свободные электроны, в электролитах — анионы и катионы, а в ионизированных газах — электроны и ионы. Полупроводники способны проводить электрический ток при определенных условиях. В полупроводниках свободные электроны и дырки являются носителями заряда. Изоляторы или диэлектрики не способны проводить электричество, поскольку в их структуре вообще отсутствуют свободные носители заряда.

Виды кристаллических решеток

Величина, определяющая тип материала и способность его к проводимости, называется удельным сопротивлением (p). Существует и обратная величина относительно удельного сопротивления. Она называется удельной проводимостью (σ) и связана с p следующей формулой: p = 1 / σ. При выполнении расчетов необходимо учитывать зависимость электрического сопротивления материала и от других физических величин или факторов, к которым относятся следующие:

  • геометрические составляющие;
  • электрические величины;
  • температурные показатели.

Эти три группы факторов необходимо учитывать при изготовлении реостатов, резисторов и других элементов резистивной нагрузки. Во время ремонта и проектирования устройств следует также рассматривать все факторы, поскольку неверные расчеты могут привести к выходу радиоаппаратуры из строя.

Геометрия материала

К геометрии проводника (полупроводника) относятся его длина (L) и площадь поперечного сечения (S). Величину S можно вычислить по абстрактному алгоритму, который подойдет для всех форм проводников и полупроводников. Он имеет следующий вид:

  1. Визуально определить форму фигуры поперечного сечения (окружность, прямоугольник или квадрат).
  2. Найти в справочной литературе или интернете формулу поиска площади поперечного сечения фигуры.
  3. Измерить необходимые геометрические параметры (например, диаметр) и подставить их в формулу.
  4. Произвести математические вычисления.

Сопротивление проводника

Если проводник является многожильным (состоит из множества проводников), то следует вычислить площадь сечения одного проводника, а затем произвести ее умножение на количество проводников. Исходя из всего, можно вывести зависимость величины сопротивления от типа вещества, длины и площади сечения проводника: R = p * L / S.

Физический смысл зависимости следующий: электрический ток движется по проводнику, тип которого определяется параметром р, и его частицы проходят через определенную длину L с сечением S (при малой площади сечения происходят более частые столкновения электронов с узлами кристаллической решетки).

Однако геометрические параметры — не единственные факторы, влияющие на значение проводимости материала.

Влияние параметров электричества

Для того чтобы учитывать влияние силы тока и напряжения на R, следует обратить внимание на закон Ома. У него существует две формулировки, применяемые для расчетов: для полной цепи или ее участка. Закон Ома для полной цепи показывает зависимость величины тока (i) от электродвижущей силы (e) и величины R, состоящей из суммы внутреннего (Rвнут) и внешнего (Rвнеш) сопротивлений.

Закон Ома для полной цепи

Переменная Rвнут является внутренним сопротивлением источника питания (генератора, аккумулятора, трансформатора и т. д. ). Rвнеш — сопротивление всех потребителей электрической энергии и соединительных проводов. Закон Ома для полной цепи связывает все эти величины таким соотношением: i = e / (Rвнеш + Rвнут). Величина Rвнеш определяется по формуле: Rвнеш = (e / i) — Rвнут.

Для участка цепи соотношение для нахождения сопротивления упрощено, поскольку не учитывается ЭДС и Rвнут. Этот закон показывает прямо пропорциональную зависимость силы тока (I) от напряжения (U), а также обратно пропорциональную от величины сопротивления R: I = U / R. В некоторых случаях для точных вычислений этих факторов может быть недостаточно, поскольку существует еще одна зависимость — температурные показатели материала.

Закон Ома для участка цепи

Влияние температуры на проводимость

Удельное сопротивление влияет на проводимость материала, однако оно зависит от температуры. Для доказательства этой гипотезы нужно собрать электрическую цепь, состоящую из следующих компонентов: лампы накаливания, источника питания (12 В), куска нихромовой проволоки и амперметра. Источник питания можно подобрать любой.

Электрическая цепьВажно чтобы величина напряжения не была выше, чем номинальное значение разности потенциалов лампы, т. е. аккумулятор 12 В, и лампа тоже должна быть на 12 В. Элементы цепи соединяются последовательно. Кусок проволоки рекомендуется разместить на огнеупорном кирпиче, поскольку, при протекании электротока через нихром, произойдет его нагревание.

Амперметр нужен для мониторинга значений силы тока, которые будут изменяться с течением времени. Лампа является световым «сигнализатором», позволяющим визуально наблюдать за увеличением сопротивления. Яркость ее свечения будет постепенно угасать. При протекании тока по цепи происходит визуальное подтверждение закона Ома для участка цепи. При увеличении R ток уменьшается. Зависимость удельного сопротивления р зависит от следующих переменных величин:

  1. Табличного значения удельного сопротивления (р0), рассчитанного при температуре +20 градусов по шкале Цельсия.
  2. Температурного коэффициента «а», который для металлов считается больше 0 (а > 0), а для электролитов — меньше 0 (a < 0).

Табличное значение р0 можно выяснить из специальных электротехнических справочников или из интернета. Описывается зависимость р от температуры таким соотношением: p = p0 * [1 + a * (t — 20)]. Можно при необходимости произвести подстановку р в формулу зависимости R от длины и сечения: R = p0 * [1 + a * (t — 20)] * L / S.

Не имеет смысла выполнять точные расчеты сопротивления, но эти особенности следует учитывать при изготовлении и ремонте различных устройств.

Сопротивление нужно измерять омметром, однако радиолюбители-профессионалы рекомендуют использовать мультиметр. Он является комбинированным и позволяет измерять не только сопротивление, а также величину тока и напряжения. Существуют модели, которые могут измерять частоту, проверять полупроводниковые приборы и т. д.

Переменный резистор

Переменный резисторОчень часто возникает необходимость изменять величину тока и напряжения при помощи изменения номинала резистора. Выполнить эту задачу поможет простой радиоэлемент, который называется реостатом. Он широко применяется для регулировки уровня громкости, увеличения напряжения на лабораторном источнике питания и т. д. Переменные резисторы, применяемые в радиотехнике, отличаются от лабораторных конструкциий. Однако принцип действия этих радиоэлементов одинаков. Части устройства очень похожи по своему предназначению. Например, ползунковый механизм, который применяется для регулировки тока.

Виды и устройство реостатов

Реостаты классифицируются по устройству и способу применения. По устройству реостаты делятся на 4 типа: проволочный, ползунковый, жидкостный и ламповый. Первый тип переменного резистора состоит из проволоки (материала с высоким удельным сопротивлением) и корпуса-изолятора. Проволочный проводник проходит через контакты, при соединении с которыми можно получить необходимую величину сопротивления.

Виды и устройство реостатов

Ползунковый реостат состоит тоже из проволоки с высоким удельным сопротивлением, корпуса-диэлектрика (на него она намотана) и ползунка. При передвижении ползунка происходит уменьшение или увеличение величины электросопротивления. Устройство применяется в лабораториях при проектировании различных электрических приборов, а также для проведения опытов в области физики или химии. Кроме того, модернизированная версия применяется в различной радиоаппаратуре.

Виды переменных резисторовНе слишком распространенным типом является модель жидкостного переменного резистора. Она имеет следующее строение: бак с электролитическим раствором и подвижные электроды.

Если уменьшить расстояние между пластинами-электродами, то произойдет уменьшение электрического сопротивления.

Реостат бывает еще и ламповым. Он включает в свой состав набор ламп накаливания, которые соединены параллельно. Если изменить количество включенных ламп, то можно изменить его сопротивление. Однако устройство имеет один существенный недостаток: зависимость величины электрической проводимости от температуры нитей накаливания. По способу применения переменные резисторы следует классифицировать таким образом:

  • пусковые;
  • пускорегулирующие;
  • балластные;
  • для возбуждения;
  • потенциометры.

Первый тип предназначен для плавного запуска электродвигателей. Пускорегулирующие переменные резисторы позволяют плавно запускать электрические двигатели постоянного тока, а также поддерживают регулировку величины силы тока. Балластные следует применять в электрических цепях для регулировки нагрузочной способности генератора электроэнергии. Они создают необходимую величину сопротивления в сети. Реостаты возбуждения используют в электрических машинах для поглощения лишней энергии.

Потенциометр предназначен для регулировки величины напряжения. Реостат устроен следующим образом: три клеммы позволяют получить от источника питания с фиксированным значением напряжения разные значения его величины. Например, понижающий трансформатор со значением напряжения на вторичной обмотке, равным 36 В. При использовании 2 транзисторов, диодного моста и реостата можно получить ряд напряжений от 0 до 34 В (2 В — потери при выпрямлении диодным мостом). Эта особенность позволяет делать и выпускать универсальные делители напряжения.

Схема и принцип работы

Обозначение реостата на схеме осуществляется в виде обыкновенного резистора, но со стрелкой, показывающей непостоянное значения сопротивления радиокомпонента. Принцип работы реостата довольно простой и основан на зависимости величины силы тока от величины сопротивления. Проводник, который находится на корпусе-изоляторе, подключен в электрическую цепь.

Ползунок — часть реостата, которая соединена с одним его выводом. При перемещении ползунка происходит регулирование значений тока или напряжения.

Принцип работы ползункового реостатаРеостат может выглядеть, как корпус-изолятор, из которого выведен специальный регулятор величины сопротивления. Однако некоторые модели, которые применяются в лабораториях, могут быть открытого типа. Они предназначены для демонстрации принципа действия устройства.

Электроток протекает по пути наименьшего сопротивления. Следовательно, ползунком можно регулировать протекание тока. Если проводник (материал с высоким удельным сопротивлением) задействован полностью, то, значит, и величина сопротивления будет максимальной. В случае, когда ползунок находится посередине проводника, сопротивление реостата равно R / 2. Подключение в электрическую цепь потенциометра, как и любого типа реостата, осуществляется последовательно.

Таким образом, реостат широко применяется в электрических схемах и позволяет регулировать значения тока и напряжения.

Помогла статья? Оцените её
1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд
Загрузка...
Добавить комментарий